
International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 934
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

An Exploration of Model Based Testing
Vasudha Singh , Subburaj Ramasamy

Abstract— Testing consumes about 50% of the total software development costs. The purpose of testing is to check the correctness
of any software created as to whether it is working according to what was expected and what it was supposed to do. Software testing
is a process of executing a program or application with the purpose of finding defects. The aim of software testing is not only to find
the defects but also to find out the situations that could cause negative impact on the customer. There are many techniques and ways
to test the application and software but in this paper we bring out one of the efficient and effective methodologies namely; model
based testing (MBT). MBT facilitates generation of effective test cases from the developed model of the software. A model describes
the functionality and behavior of the system under test (SUT). This paper introduces model-based testing and gives case study of the
same.

Index Terms— Model based testing, Software Development Life Cycle(SDLC), System under test(sut), Test case generation .

.

—————————— ——————————
1 INTRODUCTION

Billions of dollars are lost because of programming

errors. They are consequences of poor programming
quality. Program testing has one of the essential and
significant roles in Software Development Life Cycle [1].
According to an analyst's assessment, on the average about
50-60% of development time is committed for Software
testing in Industries.

Software testing and fault detection activities are time
consuming and require systematic efforts especially in
complex systems. But they are essential for ensuring quality
of the project and product. Through manual testing we can
find out defects in a software application but it is a time
consuming task. Automating the testing tasks may decrease
the time and efforts. Once the tests are automated, they can
be run quickly and results are generated.

There exist two main methodologies for test case generation
namely; Black-Box [2] and White-Box [3] techniques. Black
box testing refers to the testing of the system in terms of its
behavior. Black box testing involves traversing of various
possible inputs and the corresponding possible outputs
from them. It does not consider the internals of the system
or the process adapted for the functionality. In the case of
White-Box testing on the other hand, it is essential to
understand internal functionality of the system, internal

data structures and logic used in the coding etc.

As the needs of customers are growing rapidly, and so is
functionality, one needs to develop complex software
system. More complex the system is, more efforts are
required to test it. A small change in the system may
expand the time and efforts of testing the system. Similarly
with the increasing demands for software products, user
expects to acquire a software which is good in performance,
more dependable, productive and more reliable. The
competition demands the developer to deliver the software
meeting all the user's requirements within scheduled time
and within budget. It is a tight rope walking for the
software development organization. There comes the need
of test automation that may diminish the efforts and time as
well as the cost.

The traditional testing of the system is carried out by
checking the usefulness and working of the system
manually. But in automation testing, the testing process
involves usage of tools and scripts to generate test cases
and perform testing automatically. One evolving
automation technique is Model Based Testing[4]. This
process involves creation of a model that describes the test
cases, test data and the system under test execution
environment. Test cases are generated from the model. The
main advantage of using MBT is that the time required for
modeling the behavior of the system is less than manual
test case writing and execution. Also it generates wide
range of test cases which more often may not be possible to
be derived manually.

 MBT [4] is the generation of software test procedures,
using models of system requirements and behavior. In MBT
we create model of system under test (SUT) and generate
test cases from the model. It is different from traditional
testing because in traditional testing we have to go through

————————————————
• Vasudha singh is currently pursuing masters degree program in

Information technology in SRM University, Chennai, India, PH-
08939236239. E-mail: vasudha.s10@gmail.com

• Dr. R. subburaj, professor and consultant in SRM university, dept. of IT,
kattankulathur-603203, Chennai area , India. E-mail:
subburaj.r@ktr.srmuniv.ac.in

IJSER

http://www.ijser.org/
mailto:vasudha.s10@gmail.com

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 935
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

the code and specifications and then inspect the
functionality of a system. It takes much effort and time to
understand the code and functionality of the system. In
MBT we create model which specify the functionality and
behavior of the SUT and from that model we create the test
cases. Later on, if any changes are made in the
functionality of the SUT then accordingly the model is
modified.

In this paper in section 2, we discuss the MBT. In section 3
we discuss different types of models and approaches to
testing. In section 4 a case study is given which uses MBT
as a testing process. Conclusion is given in section 5.
Finally ended with the table having list of some MBT tools.

2 BASIC MBT APPROACH
Models are created from SUT requirements and behavior.
Model-based testing (MBT)[4] is the automatic generation
of test procedures, using models. MBT requires efforts in
building the model. From the model, we can derive test
cases for functional testing of the SUT. In order to model an
SUT, the internals of SUT need not be visible.

 MBT is defined as "software testing in which test cases are
derived in whole or in part from a model that describes
some (usually functional) aspects of the system under test
(SUT). A definition or a general description of a software
model [5] is the following:

 “Simply put, a model of software is a depiction of its
behavior. Behavior can be described in terms of the input
sequences accepted by the system, the actions, conditions,
and output logic, or the flow of data through the
application’s modules and routines. In order for a model to
be useful for group of testers and for multiple testing tasks,
it needs to be taken out of the minds of those who
understand what the software is supposed to accomplish
and written down in an easily understandable form.. With
these properties, the model becomes shareable, reusable,
precise description of the system under test.”

Model can help to know the behavior of the system and
they are simpler than actual software descriptions. The
main benefit of MBT is to create wide range of test cases in
a short span of time. It is easy to detect defects in modeling
at earlier stages based on the test cases that are derived.
MBT also facilitates traceability by considering the
matching of test cases with the requirements.

MBT helps to establish a systematic way of testing. The
main goal of testing is to find faults in SUT. But the number
of faults which we find depends upon the way in which the
system is modeled. A wrong understanding of

requirements may lead to incorrect modeling of the system,
as a result it leads to fault.

A model is a halfway presentation of the SUT. A model can
also be created from the specifications and requirements.
Test sequences are derived from the model. These test
sequences are known as a unique test suite. The role of test
sequences is to control the system under test, driving it into
the different conditions under which it can be tested for
conformance with the model. The test oracle observes the
progress of the implementation and issues a pass or fail
verdict. In some model-based testing situations, models
contain enough data to create executable test suites. A
general representation of MBT process is given in Fig. 1.

 Fig 1. Genral MBT process.

.
To understand the MBT, we take a simple case study of “
ROBOT” as an application for testing. For this case study
we create FSM model by taking valid combination of inputs
as the initial state and consider output as the final state.
The ROBOT application has following functionality: It can
be turned on and off, can walk, run, raise and lower its
arms, turn its head, and talk.
 A listing of all the possible events and states associated
with the ROBOT application is given in Table 1.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 936
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 Table 1: list of all events and their states in the ROBOT
application

 From the requirements captured in Table 1, we can create a
model for ROBOT system. The model is shown in Fig. 2.
Now we can create the test cases from this model. In test
cases, we start from initial state which is shown as filled
circle in Fig. 2. The first test case is “turn on” of the ROBOT
which will result in ROBOT getting TurnedOn. From there
we can generate 5 test cases; talk, run etc.

 Fig 2 FSM model for the case study.

3 TYPES OF MODELS IN MBT APPROACH
Model of software is the description of functionality and
behavior and it can be described in terms of input
sequence, action, condition and output logic. Many models
are used for software testing, some of which are described
below:

3.1 Finite state machine
Finite state machines have been around even before the
beginning software engineering. Finite state machines are
created for an application, which has a limited number of
particular states. Consider a typical testing situation: a
tester applies inputs and evaluates the result. The tester
then chooses an alternate input depending upon the
previous result, and again apply the set of conceivable

inputs. At any given time, a tester has a particular set of
inputs to apply to the SUT. Such a model is the finite state
machine [6].

3.2 Statecharts
State charts[7] are an augmentation of finite state machines
that particularly address real time and complex systems.
They give a structure to defining state machines in a
pecking order, where a solitary state can be "extended" into
an alternate "lower-level" state machine. They additionally
accommodate simultaneous state machines. Furthermore,
the structure of State charts includes outside conditions that
influence whether a move happens from a specific state,
which as a rule can decrease the size of the model being
made. State charts are similar to the most influential type of
automata: the Turing machine. Then again, State charts are
more down to business while keeping up the same
expressive abilities. State charts are easy to understand as
compared to finite state machines.
3.3 UML (unified modeling language)
Modeling is the designing of software applications before
coding. Modeling is an essential part of large software
projects, and helpful to medium and even small projects .
UML[8] helps one to specify, visualize, and document
models of software systems, including their structure and
design, in a way that meets all of these requirements. UML
model can be either platform-independent or platform-
specific.

 UML is to models what C or Pascal are to projects – a
method for depicting very complex behavior. UML can
likewise incorporate different sorts of models inside it, so
finite state machines and state charts can get to be segments
of the bigger UML

3.4 Markov chain
 Markov chains[9] are stochastic models [kemeny & Snell
1976]. A particular class of Markov chains, the discrete-
parameter, limited state, time-homogenous, irreducible
Markov chain, has been utilized to model the utilization of
programming. They are structurally like limited state
machines and can be considered probabilistic automata.
Their essential worth has been in creating tests. Testing
specific frameworks can be found in(Avritzer & Larson
1993)[12] and (agrawal & Whittaker 1993)[13].

3.5 Grammar
A formal grammar[10] is a set of rules for rewriting strings,
along with a "start symbol" from which rewriting starts.
Therefore, a grammar is usually thought of as a language
generator. Grammar has mostly been used to describe the
syntax of programming and other input languages.
Functionally speaking, different classes of grammars are
equivalent to different forms of state machines. Sometimes,

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 937
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

they are much easier and more compact representation for
modeling certain systems such as parsers. Although they
require some training, they are, thereafter, generally easy to
write, review, and maintain. However, they may present
some concerns when it comes to generating tests and
defining coverage criteria.

Some tools available for MBT are given in Appendix 1.

4. CASE STUDY

In order to demonstrate MBT, we selected a website
named “www. Orbitz.com ”

 Fig. 3.Process of creating test cases from the model.

As shown in Fig. 3 we create our model for the website. In
our case study we have basically six pages like hotels,
flights , activities, packages, cars, cruises and for each page
there is individual form. we can go from one page to
another page by giving valid input. This whole scenario is
described in Fig 4 in the form of model . and then test cases
are derived in Table 3 and Table 4.

We will use FSM to model and test the web site. The basic
FSM terminology is given below:

Formally a finite state machine representing a software
system is defined as a tupels (I, S, T, F, L), where

• I is the set of inputs of the system (as opposed to
input sequences).

• S is the set of all states of the system.

• T is a function that determines whether a transition
occurs when an input is applied to the system in a
particular state.

• F is the set of final states the system can end up in
when it terminates.

• L is the state into which the software is launched
that means initial state

.

 Fig. 4. FSM model of the SUT.

Finite state machine models can be represented as graphs,
also called state transition diagrams, with nodes
representing states, arcs representing transitions, and arc-

labels representing inputs causing the transitions. Usually,
the starting and final states are specially marked. Automata
can also be represented as matrices, called state transition

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 938
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

matrices. In FSM methodology models are created by
person knowledgeable in the application heuristically(as
explained in fig 4) .After creating the model test suits are
derived for each page of the application. In a linear
organization, start with the
home page as well. We may then test successive Web
pages in a column- first or row- first order. In a network
organization, begin with the home.

Then test all the web pages that are reachable (via links)
from the home page. The test suit for testing the “ flight
only page “ are given below. Similarly create test suites for
each pages in our website to check that all the links, buttons
forms are working accordingly to the specifications or not.
It has been ensure that there is no broken and dead links
and for this we create our test cases as given in Table 3.

 Table 3: Test suits for the flight page of the web application

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 939
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Knowledge on software modeling, test criteria, test metrics,
or languages to generate test scripts is tester skill
requirements. Different approaches require different skills
and these are needed ahead of usage. The main issue is
how to minimize the human skill required and
simultaneously maximize the automation level. To make
ideal test cases, consider negative test suits which should
not be accepted by the application. Test suits with negative
value are also given below in Table 4.

The test case in red color show that we are trying to give
the invalid values to the fields which should not accepted
by the form. After creating all the test suits we feed them to
the tool for “automation testing” which gives us the result,
whether our test cases have passed or failed. When we use
MBT for generating the test cases it is unlikely that any
significant feature will remain uncovered during testing.
The automation helps in selection of test cases for
regression testing.

. Table 4: Test suits for the flight page of the web application

 5. CONCLUSION
In this paper a study of model based testing is carried out.
MBT provides the roadmap for automatic testing of
software. It provides effective test strategies without
missing any important test cases. Model-based testing is an
efficient and adaptable method of testing software by
creating a model describing the behavior of the system
under test. The availability of tools makes the job easier.
Two case studies are given in this paper which will help to

understand the basic concept of MBT and also describe the
way to generate test suits from the model. Large number of

test cases can be generated from this model. The method
that we have proposed in this paper is primarily for
verifying the functionality of the SUT.

 6 .REFERENCES
[1] Jinalben Patel, Roger Lee, Haeng-Kon Kim: Architectural View in
Software Development Life-Cycle Practices in 6th

IEEE/ACIS International Conference on Computer and Information
Science (ICIS 2007) pp- 194-199.
.
 [2] T. Y. Chen, and Pak- Lok Poon,: Experience With Teaching Black-
Box Testing in a Computer Science in Software Engineering
Curriculum Education, IEEE Transactions on (Volume:47 , Issue: 1)
pp: 42-50, 2004

IJSER

http://www.ijser.org/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=13
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=28334

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 940
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

[3] Rajiv Chopra, Sushila Madan : Reusing Black Box Test Paths For
White Box Testing of Websites in Advance Computing Conference
(IACC), 2013 IEEE 3rd International pp: 1345-1350 .

 [4]. Neto, a.d. ; subramanyan, r. ; vieira, m. ; travassos, g.h. ;shull,
f.:improving evidence about software technologies: a look at model-
based testing in software, ieee (volume:25 , issue: 3). Pp:10-13, 2008.
[5] El-Far, I. K. & Whittaker, J. A. Model-based Software Testing . In:
Marciniak, J. (ed.), Encyclopedia on Software Engineering, Volume 1.
New York, USA: John Wiley & Sons Inc, 2001. pp. 825-837. ISBN 0-471-
21008

[6] David Lee, Mihalis Yannakakis: Principles and method of testing
Finite State Machine in Proceedings of the IEEE (Volume:84 , Issue: 8)
pp :1090-1123, 1996

 [7] Hassan Reza, Kirk Ogaard, Amarnath Malge: model based testing
technique to test web applications using statecharts in Information
Technology: New Generations, 2008. Fifth International Conference.
pp: 183-188, 2008

[8] Emanuela G. Cartaxo, Francisco G. O. Neto and Patricia D. L.
Machado: Test Case Generation by means of UML Sequence Diagrams
and Labeled Transition Systems in. pp: 1292-1297

[9] Philippe, B. Introduction to the Numerical Solution of Markov Chains
in Computational Science & Engineering, IEEE (Volume: 3 , Issue: 2)
(1996).

[10] Chris Jones : An Example-Based Introduction to Graph
Grammars for Modeling. System Sciences in Proceedings of the
Twenty-Third Annual Hawaii International Conference on (Volume:iii
). pp: 433-442, 1990

[11] Http://mit.bme.hu/~micskeiz/pages/modelbased_testing.
html#tools

[12] A Avritzer, B Larson - ACM SIGSOFT Software Engineering
Notes, 1993 - dl.acm.org

[13] IK El‐Far, JA Whittaker - Encyclopedia of Software Engineering,
2001 - Wiley Online Library

 APPENDIX 1

LIST OF OPEN SOURCE TOOLS FOR MBT[11]

NAME INPUT FORMAT DESCRIPTION

FMBT

Custom (AAL)

fMBT (free Model-Based Testing) generates test cases from

models written in the AAL/Python pre/postcondition
language using different heuristics (random, weighted

random, lookahead)

GRAPH WALKER

FSM

Test generation from Finite State Machines. Search algoritms:
A* or random, with a limit for various coverage criteria

(state, edge, requirement). Formerly called as mbt.

JTorX

LTS

JTorX is a reimplementation of TorX in Java with additional

features. The LTS specification can be given in multiple
format, and it can interact on-the-fly with the implementation

under test.

MODELJUNIT

EFSM

ModelJUnit allows you to write simple finite state machine

(FSM) models or extended finite state machine (EFSM)
models as Java classes, then generate tests from those models

and measure various model coverage metrics.

OSMO

JAVA

OSMO uses model programs written and annotated in Java,
and creates tests by exploring these models using different

strategies (random, using constraints to guide

PyMODEL

Python source

yModel supports offline and on-the-fly testing. It uses
composition for scenario control. Coverage can be guided by

IJSER

http://www.ijser.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6495610
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6495610
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=52
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4497747
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=11069
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4492437
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4492437
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4492437
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4492437
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=99
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=10988
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=173
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=173
http://mit.bme.hu/~micskeiz/pages/modelbased_testing.%20html#tools
http://mit.bme.hu/~micskeiz/pages/modelbased_testing.%20html#tools
https://scholar.google.co.in/citations?user=2gCyjTAAAAAJ&hl=en&oi=sra

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 941
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

a programmable strategy.

IJSER

http://www.ijser.org/

	2 basic mbt approach
	3 types of models in mbt approach
	3.1 Finite state machine
	3.2 Statecharts
	3.3 UML (unified modeling language)
	[9] Philippe, B. Introduction to the Numerical Solution of Markov Chains in Computational Science & Engineering, IEEE (Volume: 3 , Issue: 2) (1996).

